Pages Menu
Categories Menu

Posted by on Nov 30, 2014 in Quantum Mechanics Research | 0 comments

B. Spin ½ : Is seeing believing?

In the next few posts, I am going to describe spin in an entirely different way.  Immediately you should be skeptical and doubtful that spin could be anything else from its present description: a point particle of intrinsic angular momentum.  Do an experiment: Stern-Gerlach; coincidence photons; delayed choice, then spin is observed to have two pure states and these are defined with respect to the laboratory frame of reference. Think of NMR (Nuclear Magnetic Resonance) and MRI (Magnetic Resonance Imaging).  In these experiments, spins align with magnetic fields and their polarizations are measured. In quantum mechanics, spin is postulated, but it arises naturally in quantum field theory from the Dirac equation.  Everything is clear mathematically, but parts make no sense. You have to accept that Nature is non-local. Here are some questions: Does spin remain a point particle vector when not observed?  Align a bunch of spins in a magnetic field, and then remove the field.  Do those individual spins remain as observed: point particles of spin, or do they...

Read More

Posted by on Nov 25, 2014 in A Local Realistic Reconciliation of the EPR paradox, Quantum Mechanics Research | 0 comments

A. Logically Non-locality makes no sense.

For many years now (since 2006) I have been studying spin 1/2 that has structure. People think the idea is crazy because spin is firmly established by the Dirac Equation. Recently I found that the two dimensional structured spin I have been advocating is just as firmly based in its own Dirac equation with a different algebra. I will come back to that later. Non-locality, going back to Isaac Newton, has always been unacceptable, at least until modern times. Instantaneous action-at-a-distance is physically unpalatable and always belies a deeper theory. So why does almost every physicist believe in it? To be clear, I do not suggest that Bell’s Theorem is wrong.  Bell gave a way of distinguishing classical from quantum correlation, and although there are dissenters, they are few. According to quantum mechanics, to agree with the 2√2 violation of Bell’s Inequalities, the separated spins must remain entangled, and therefore have non-local correlations. No one can explain how particles remain entangled after they have separated. The point is, I cannot accept that...

Read More

Posted by on Aug 30, 2013 in General Science, Physical Chemistry | 3 comments

Physical Chemistry – Overview of Thermodynamics

In one example I use bond energies to calculate the energy per mole of sucrose and TNT (the explosive trinitrotoluene). Most students expect that TNT has more energy, but it turns out the two have about the same. So why is TNT an explosive (actually a conflagration)? TNT burns rapidly and involves a huge volume change. It is the rate of reaction (chemical kinetics) and the rapid volume change that causes the explosive damage. Then I can move to the thermodynamics overview.

Read More

Posted by on Aug 22, 2013 in A Local Realistic Reconciliation of the EPR paradox, Quantum Crackpot RANDI Counter Challenge, Quantum Mechanics Research | 0 comments

Undeterred by rejection of EPR paper.

I am sure the reviewer is knowledgeable about the EPR paradox and the foundations of quantum mechanics but he missed or dismissed a departing point of my approach: quantum mechanics is a theory of measurement and I find states that exist only when not measured. These undetected states account for the quantum correlation usually attributed to non-locality. Although the reviewer’s comments are easily answered, I was not allowed a rebuttal:

Read More

Posted by on Aug 6, 2013 in General Science, Physical Chemistry | 0 comments

Physical Chemistry—hotness and coldness

When I start into heat capacity I contrast the temperature of a substance with the feeling of hot and cold. A thermometer will tell you the temperature of a substance, but that does not tell you how much heat is present. If you touch something, you can tell if it is hotter or colder than your hand, but what about two substances at the same temperature?

Suppose outside it is -10 C (14 F) and there you find a piece of steel and a piece of Styrofoam. Which is colder? If you touch the steel it feels colder than the Styrofoam, but they are both at the same temperature. If you placed the steel on the Styrofoam, no heat will flow between them (Third Law of thermodynamics). Since your hand is much hotter than the objects, heat must flow from your hand into them.

Read More